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Abstract. Euclidean random matrices appear in a broad class of physical problems involving
disorder. The problem of determining their spectra can be mapped, using the replica method, into

the study of a scalar field theory with an interaction of the type eψ
2
. We apply the instanton method

to study their spectral tails.

1. Introduction

Place N points randomly in a d-dimensional Euclidean space of volume V . Denote the
locations of the points by �xi (i = 1, . . . , N). Choose a suitably well behaved function f (�x),
vanishing as its argument tends to infinity. Consider the N × N matrix

Hij = f (�xi − �xj ) (1.1)

and solve the eigenvalue equation
∑

j Hijψj = Eψi . We are interested in the density of
eigenvalues ρ(E) and the localization properties of the eigenvalues ψi as we average over the
ensemble of matrices (called Euclidean random matrices in reference [1]) generated by placing
�xi randomly. The limit N → ∞, V → ∞, with the density ρ ≡ N/V (not to be confused
with ρ(E) of course) held fixed, is understood. In reference [1] ρ(E)was calculated in various
approximations. (A more involved version of (1.1) was also studied.) We will refer to this
henceforth as model I.

This type of random-matrix problem may be relevant to a broad class of physical situations
[2, 3], structural glasses [4] and amorphous semiconductors for example [5]. Matrices of this
type have also appeared in the instantaneous normal-mode analysis in the theory of liquid [6]
and in the bipartite matching problem [7, 8] in combinatorial optimization.

A venerable problem in the study of disordered systems is that of an electron in a metal
moving in a set of randomly distributed impurities. The simplest version of this problem
ignores the periodic potential of the metal and treats the impurities as δ-function scatterers
with Hamiltonian

H = −∇2 + 2πa
N∑
i=1

δ(�x − �xi)

where �xi are randomly located. The density of states in the tail of the distribution, where it
is exponentially small, was studied by Lifshitz [9]. Later this calculation was reproduced and
extended using an instanton method [10] in the case of a repulsive potential, a > 0. A related
problem of an electron moving in a white-noise Gaussian random potential was studied by
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Cardy [11]. One of us [12] extended this model to include a magnetic field B in which case
∇2 is replaced by (∇ − ieA)2 with A the vector potential. The density of eigenvalues in the
tail of the distribution was calculated. We will refer to this henceforth as model II.

In this paper, we will elucidate the relation between model I and model II. It turns out
that the relationship only holds for the case of an attractive potential, a < 0. We will apply
the instanton method to study the density of eigenvalues ρ(E) for large negative E. This
calculation is similar to that for a > 0 already carried out earlier [10]. Finally, we extend
model I to include a magnetic field B for d = 2. Model I with a magnetic field may be relevant
for studying the quantum Hall transitions.

2. Review of field theoretic formulation

In reference [1] the problem was mapped into a quantum field theory. We will review the
procedure here.

We start with the replica identity

�N =
〈

1

det(z − H)n

〉
= 〈

e−n tr log(z−H)
〉

(2.1a)

=
〈∫ N∏

i=1

n∏
a=1

dφa
i e− ∑

ija φ
a∗
i (zδij−Hij )φ

a
j

〉
(2.1b)

with Hij = f (xi, xj ). Here a = 1, 2, . . . , n is the replica index. We have used complex
integration variables φa

j here because eventually we want to study the problem with a magnetic
field in which case H will be Hermitian rather than real symmetric as in (1.1), for which real
integration variables would have sufficed. Once we have calculated �N we can obtain the
desired Green’s function by differentiation:

G(z) =
〈

1

N
tr

1

z − H

〉
= lim

n→0

(
1

N

(
−1

n

∂

∂z

)
�N

)
. (2.2)

Let us insert the representation of the identity (here ψ and ψ̂ denote two complex scalar fields)

1 =
∫

Dψ̂ δ

(
ψ̂a(x) −

∑
i

φa
i δ(x − xi)

)
=

∫
Dψ Dψ̂ ei

∑
a

∫
dx ψ∗

a (x)(ψ̂a(x)−
∑

ia φ
a
i δ(x−xi ))+h.c.

(2.3)

into the functional integral refining �, thus obtaining

�N =
∫

Dψ̂ Dψ e
∑

a

∫ ∫
dx dy ψ̂∗

a (x)f (x,y)ψ̂a(y)ei
∫

dx ψ∗
a (x)ψ̂a(x)+h.c. 〈J 〉 (2.4)

where

J ≡
∫

dφ e−z
∑

ia |φa
i |2−i

∑
ia (φ

a
i ψ

∗
a (xi )+h.c.) (2.5)

is a functional of ψ .
Integrating out φ, we find

〈J 〉 =
〈∏

i

(
2π

z

)n

e−(1/z)
∑

i |ψa(xi )|2
〉
. (2.6)

Recall that the average 〈J 〉 means
∫
(dx1/V )(dx2/V ) · · · (dxN/V ) J we see that the multiple

integral factorizes and we obtain

〈J 〉 = AN (2.7)
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with

A ≡ 1

V

∫
dx e−(1/z)

∑
a |ψa(x)|2 . (2.8)

We have taken the n → 0 limit wherever we are allowed to do so. The integration over ψ̂ can
be done immediately giving

�N =
∫

Dψ e
∫ ∫

dx dy ψ∗(x)f −1(x,y)ψ(y)AN . (2.9)

To put the factor AN into the exponential we follow Gibbs and introduce the grand canonical
ensemble

Z(α) ≡
∞∑

N=0

αN

N !
�N =

∫
Dψ e

∫ ∫
ψ∗f −1ψ+(α/V )

∫
dx e

−(1/z)
∑

a |ψa(x)|2
. (2.10)

In other words, instead of focusing on the original problem of studying a random N -by-N
matrix we now consider an ensemble of such matrices with N varying over the non-negative
integers. We expect the sum in (2.10) to be dominated by some values of N :

〈N〉 = ∂

∂α
logZ(α) = α

V

〈∫
dx e−(1/z)

∑
a |ψa(x)|2

〉
−→
n→0

α. (2.11)

Defining the density of points as ρ ≡ 〈N〉/V , we obtain Z(α) = ∫
Dψ e−S(ψ) with the action

S(ψ) = −
∑
a

∫ ∫
dx dy ψ∗

a (x)f
−1(x, y)ψa(y) − ρ

∫
dx e−(1/z)

∑
a |ψa(x)|2 . (2.12)

The action S(ψ) defines a non-local field theory. Up to this point, any f (x, y) could have
been used. A particularly convenient choice is the Yukawa function

f (x, y) = f (x − y) = (−)

∫
ddk

(2π)d
eik(x−y)

k2 + m2
. (2.13)

The overall minus sign is included so that the resulting field theory would have the standard
kinetic energy term:

S(ψ) =
∫

ddx

[
n∑

a=1

(|∇ψa|2 + m2|ψa|2) − ρe−(1/z)
∑n

a=1|ψa |2
]
. (2.14)

One remark about the spectrum: the eigenvalue equation implies that for a general

f (x) =
∫

ddk

(2π)d
f̃ (k)

we have

E =
∑
ij

ψ∗
i Hijψj =

∑
ij

ψ∗
i

∫
ddk

(2π)d
f̃ (k)eik(xi−xj )ψj =

∫
ddk

(2π)d
f̃ (k)

∣∣∣∣ ∑
j

e−ikxj ψj

∣∣∣∣
2

.

(2.15)

Thus, for f̃ (k) < 0, as is the case with the choice in (2.13), the eigenvalues are all negative.
A few remarks about renormalizability and dimensionless parameters are in order. This

field theory is ultraviolet finite for d = 1, renormalizable for d = 2 (although requiring
an infinite number of counter-terms in contrast to the sine–Gordon theory with its special
symmetry) and non-renormalizable for d > 2. The original problem, in model I, is well
defined for any well defined f (x). However, for the particular choice of

f (x) = (−)

∫
ddk

(2π)d
eikx

k2 + m2
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that we used in order for the field theory to have a normal kinetic energy term, f (0) does not
exist for d > 1. One way of regularizing is to write

f (x) = (−)

∫
ddk

(2π)d
eikx

(
1

k2 + m2
− 1

k2 + M2

)

= (−)

∫
ddk

(2π)d
eikx

(k2 + m2)(k2 + M2)
(M2 − m2). (2.16)

The field theory would then be cut off correspondingly by the Pauli–Villars mass M . The
ultraviolet difficulties in model II can be understood as arising from the fact that a δ-function
potential is too singular to have a well defined spectrum for d > 1. Physical ultraviolet
regularizations would replace the δ-function potential by a smooth function.

Thus, for d = 1 the density of states should be a well defined function of E, ρ and m.
For d = 2 it should be expressible in terms of renormalized parameters but for d > 2 it will
be strongly dependent on the details of the cut-off.

Ignoring cut-offs, we see that the field theory (2.14) contains two dimensionless quantities:

ν ≡ ρ/md

and

( ≡ |E|m2/ρ

where we have set z = −|E| in the light of an earlier remark. The parameter ν has the physical
interpretation of the number of points in the correlation volume of the function f . Consider
expanding the action:

S(ψ) =
∫

ddx

[ n∑
a=1

(
|∇ψa|2 +

(
m2 − ρ

|E|
)

|ψa|2
)

− ρ

|E|2
( n∑

a=1

|ψa|2
)2

+ · · ·
]
. (2.17)

The coupling constant of the ψ2n-term is of order ρ/En. Since this has dimensions of
(mass)d−n(d−2), we see that the condition for the dimensionless coupling constant to be small
is (for n � 2)

(nνn−1 � 1. (2.18)

Here we have assumed( > 1, a condition necessary for the perturbative stability of the theory,
as discussed in section 4. If ( is only slightly greater than 1 then we get more complicated
conditions:

(nνn−1

[
1 − 1

(

]d/2+n(1−d/2)

� 1. (2.19)

We see that the conditions of equation (2.18) or (2.19) require at least one of the two parameters
( and ν to be large.

3. Relationship between models I and II

Consider model II in the case of an attractive potential, a < 0, and assume that all points
are far apart compared to the range of the ground-state wave-function, �ψ0(�r), for a single
δ-function potential. Then the lowest energy states will be formed by tunnelling processes
between these lowest bound states. (As mentioned above, for d > 1, the δ-function potential
must actually be replaced by some smooth function.) To formalize this, we go to the tight-
binding approximation. The hopping amplitude for an electron to go from a potential well at
the origin to a potential well a distance �R away is given by the overlap integral

t ( �R) = 2πaψ0(�0)ψ0( �R) (3.1)
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where ψ0(�r) is the normalized solution of

−∇2ψ0(�r) = Eψ0(�r) (3.2)

(for r > 0) with E the (negative) binding energy in the single-site potential. The hopping
amplitude t ( �R) is thus just a constant times a wave-function ψ0( �R) and so essentially equal to
the Yukawa function in equation (2.13) with |E| playing the role of m2.

In references [10, 12], it was shown that model II can be represented in terms of a field
theory with the action

S(ψ) =
∫

ddx

[
n∑

a=1

(|∇ψa|2 − E|ψa|2) + ρ(1 − e−2πa
∑n

a=1|ψa |2)

]
.

In the light of the preceding discussion, this is precisely what we would expect. Thus, we see
that model II corresponds to model I with a specific choice of the function f (�x), with the map
of the complex variable z to the inverse of the strength of the potential 2πa and m2 to −E.

4. Instanton analysis

In reference [1] the density of eigenvalues was studied starting with the field theory (2.14).
Here as promised we will use the instanton method [13] to study the tail of the spectrum.

In order for G(z) to have an imaginary part the functional integral defining the field theory
has to be ‘sick’. Otherwise, the functional integral, if well defined, is manifestly real. Let us
check this statement. Consider the regime in which z is real positive so that z = |z|. Then the
potential

V (ψ) = m2|ψ |2 − ρ(e−(1/|z|)|ψ |2 − 1) �
(
m2 +

ρ

|z|
)

|ψ |2 + · · · (4.1)

is well behaved at large |ψ |and so perturbation theory should be fine. Indeed, by the argument
given earlier we expect all the eigenvalues to be negative, and so G(z) should not have an
imaginary part.

In contrast, for z negative, we have

V (ψ) = m2|ψ |2 − ρ(e(1/|z|)|ψ |2 − 1) �
(
m2 − ρ

|z|
)

|ψ |2 + · · · . (4.2)

The potential is unbounded below for large |ψ |. Perturbation theory fails and G(z) could
well have an imaginary part. From (4.2) we see that we should distinguish two regimes:
small eigenvalue |z| � ρ/m2 and large eigenvalue |z| � ρ/m2. In the large-eigenvalue
regime the potential V (ψ) starts out concave upward before becoming unbounded and so
there can be an instanton configuration connecting ψ = 0 to ψ = ψ0 where V (ψ0) = 0.
In the small-eigenvalue |z| � ρ/m2 regime the potential V (ψ) starts out downward and the
instanton approach does not apply. Some other non-perturbative method is needed to study
the spectrum.

To summarize, we have three regimes: (I) z real positive, no eigenvalue and G(z) does not
have an imaginary part, (IIa) z real negative and |z| � ρ/m2 (that is, ( � 1), non-perturbative
regime, and finally (IIb) z real negative and |z| � ρ/m2 (that is, ( > 1), and the instanton
approach applies provided that the coupling constants are small, the conditions of equation
(2.18). In this paper we focus on the regime (IIb) and hence study the tail of the eigenvalue
distribution.

We will now give a heuristic argument on how large negative eigenvalues can occur.
Suppose that in the distribution of the N random points we have an isolated cluster of k
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points within a length scale comparable to the length scale l characteristic of f (x) (l = 1/m
in our specific example). The Hamiltonian H then contains a k-by-k block whose entries
are of order f (0), thus giving us one eigenvalue of order kf (0) (recall that f (0) is negative
in our example). The probability Pk of obtaining such a cluster is given by the Poisson
distribution Pk ∝ e−(ρld )(ρld)k/k! and so heuristically we obtain the estimate for the prob-
ability of obtaining a large negative eigenvalue E to be

P(E) ∼ e−|E/f (0)| log |E/f (0)|. (4.3)

We expect that this heuristic argument will work best for d = 1.
For z = E large and negative, let us scale ψ = √|E|ϕ and x = y/m to rewrite the action

as

S(ϕ) = |E|
md−2

∫
ddy

(
|∇yϕ|2 +

(
|ϕ|2 − ρ

|E|m2
e|ϕ|2

))
.

In terms of the dimensionless quantities ( ≡ |E|m2/ρ and ν ≡ ρ/md , we see that

e−S ∼ e−ν(h(()

for some function h.
When the conditions of equation (2.18) are satisfied, the functional integral giving Z(α) is

dominated by the extremum of the action S, namely the instanton. We assume that the instanton
is spherically symmetric, so that q ≡ |ϕ| is a function of |�y| only. Following standard practice
in instanton analysis we identify q as the position of a particle along a line and t ≡ 1√

2
|�y| as

time; we have the equation of motion

d2q

dt2
+
(d − 1)

t

dq

dt
= −dU

dq
(4.4)

with the potential

U(q) = −q2 +
1

(
(eq

2 − 1) (4.5)

as shown in figure 1.

0.5 1 1.5 2
q

-1

-0.5

0.5

1

U

Figure 1. The potential for the single-particle problem for ( = 10.

For d > 1, there is a time-dependent friction term. For d = 1 there is no friction.
Let us define q0 and qmin by U(q0) = 0 and U ′(qmin) = 0 respectively:

q2
min = log( (4.6)



Hopping between random locations: spectrum and instanton 8869

and

q2
0 = log((q2

0 + 1).

We have q2
0 � log( + log log( + · · · for ( � 1. We wish to determine the trajectory of

the particle, starting at q = q0 at t = 0 and ending at q = 0 at t = ∞. In the end, we would
like to calculate the action associated with the trajectory.

Clearly, we need to treat the cases d = 1 and d > 1 separately.
For d = 1, we have explicitly

S = 2
√

2|E|m
∫ ∞

0
dt

(
1

2
q̇2 − U(q)

)
.

It is convenient to work with the reduced action

Sr =
∫ ∞

0
dt

(
1

2
q̇2 − U(q)

)
.

With the initial conditions specified, the equation of motion integrates to q̇2 = −2U(q) and
so the trajectory is given by

t =
∫ q0

q

dq ′√
−2U(q ′) . (4.7)

Evaluated for this trajectory (4.7), the action is equal to

Sr =
∫ ∞

0
dt q̇2 =

∫ q0

0
dq

√
−2U(q) (4.8)

which can be easily integrated numerically as a function of (.
Our instanton analysis thus predicts that for d = 1, the tail of the eigenvalue distribution

should go like

P(E) ∼ LF(|E|, ρ)e−2
√

2ν(Sr (() (4.9)

where L denotes the size of the system (which we need to compare with direct numerical
diagonalizations ofH) andF(|E|, ρ) the infamous determinant factor in instanton calculations
(which we have not computed). We expect F(|E|, ρ) to be slowly varying compared to the
exponential factor e−2

√
2ν(Sr (().

We have done some numerical work in which we diagonalized the matrix H directly for
N ranging up to 1000. In figure 2 we show the numerical data for N = 1000, ρ = 1.2 and
m = (1.3)−1. Only the tail of the distribution, which we take to be comprised of the 250
eigenvalues with the most negative E, is displayed. We take (4.9) and compute the integrated
number of eigenvalues N(E) = N

∫ E

−∞ dE′ P(E′), treating F(|E|, ρ) as a constant C in the
range of E of interest. (N(E) is not to be confused with N of course; N(∞) = N.) We
then do a one-parameter fit in C to the numerical data. As expected, the theoretical curve
appears to fit the numerical data in the applicable regime, equation (2.18). It should be kept in
mind that the theoretical curve fails to make sense as ( approaches 1 which, for our particular
parameter choice, corresponds to E = −2.03. Also, the numerical data are clearly dominated
by finite-size effects in the extreme tail where N(E) is O(1).

Analytically, we are able to study the problem only for ( � 1 in which case

Sr � 1√
2

log(. (4.10)

We can check this result by studying the trajectory of course. Think of the particle being
released at q0 with zero velocity. We divide the trajectory into three regimes: (1) short time,
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-3 -2 -1
E

50

100

150

200

250

N

Figure 2. The number of eigenvalues with energy < E, plotted versus E. Only the low-energy
tail of the distribution is plotted.

during which the particle moves rapidly from q0 to qmin, (2) intermediate time, during which
the particle passes through the minimum of the potential at qmin, and (3) long time, during
which the particle slowly climbs the hill to q = 0. A priori, it is not immediately obvious
whether the short- or long-time regime gives the dominant contribution to Sr . A detailed
calculation, which we now outline, shows that the long-time regime dominates for ( � 1.

In the short-time regime, we make the approximation U(q) � 2q3
0 (q−q0), thus obtaining

q(t) = q0 − 1
2q

3
0 t

2 + · · ·. Similarly, we approximate U(q) in the other two regimes and match
the trajectory, thus obtaining in the intermediate-time regime

q(t) = qmin − 1√
2

sin(
√

2 log((t − tmin)) + · · ·
and in the long-time regime

q(t) = qmine−(t−tmin) + · · · where tmin =
(

2

q3
0

(q0 − qmin)

)1/2

→ (2 log log()1/2

log(
.

Substituting into Sr , we find that Sr goes like O((log log()3/2), O((log log()1/2) and 1√
2

log(
in the short-, intermediate- and long-time regimes respectively. Thus, the long-time regime
dominates and we obtain

S � 2|E|m log
|E|m2

ρ
. (4.11)

Using f (0) = −1/2m, for d = 1, from equation (2.13), we see that the instanton result,
equation (4.11), is in agreement with the heuristic argument of equation (4.3).

The limit ( = 1 + δ, with δ � 1, is also interesting. We have q0 � √
2δ and qmin � √

δ,
with U(q) � −δq2 + 1

2q
4. The trajectory is explicitly found to be

q(t) =
√

2δ(1 − tanh
√

2δt).
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We obtain

S � 3

2
√

2

( |E|m2

ρ
− 1

)3/2

. (4.12)

We now turn to higher dimensions d = 2 or 3. The equation of motion now includes a
friction term

d2q

dt2
+
(d − 1)

t

dq

dt
= q

(
1 − 1

(
eq

2

)
.

At small time, near q0 we have

d2q

dt2
+
(d − 1)

t

dq

dt
� −γ

and the solution

q(t) = q0 − γ

2d
t2 + · · · .

Henceforth we will consider only the large-( limit. The minimum of the potential at qmin is
reached at time

tmin =
√

2d(q0 − qmin)/γ �
√
d

log log(

(log()2
→ 0

for large(. Focusing then on the large-time regime we can approximate the equation of motion
by

d2q

dt2
+
(d − 1)

t

dq

dt
� q.

For d = 3, we have an exact solution

q(t) = c

t
e−t

with constant c fixed by matching to the small-time solution so that

q(t) = qmintmin

1

t
e−(t−tmin).

Putting this solution into the action we find

S ∼ (log()3

log log(

for large (.
For d = 2, we mention for what it is worth that the equation of motion has an exact

solution for large time in terms of a Bessel function:

q(t) = c′K0(t) −→
t→∞ c′

√
π

2t
e−t

(
1 − 1

8t
+ · · ·

)
. (4.13)

In fact, this instanton calculation seems to agree with the heuristic argument, given earlier
in this section, only for d = 1. While we do not understand this discrepancy, we suspect that it
is related to the existence of ultraviolet divergences for d > 1. Note that the heuristic estimate
of equation (4.3) involves f (0), which is ultraviolet divergent for d > 1. On the other hand,
the instanton result appears to be ultraviolet finite. However, this is somewhat illusory, since
we expect loop corrections to bring in divergences, for d > 1. This issue requires further
investigation.
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5. Magnetic field

In this paper, we propose a natural generalization of model I to include a magnetic field. In
principle, this would define a new model for studying localization properties in the quantum
Hall system.

There are two possibilities. In the first, we write

f ( �xi, �xj ) = g( �xi, �xj )ei
∫ xj
xi

�A·d�l
. (5.1)

To have a well defined model, we have to specify the path joining �xi to �xj . The simplest
choice is to take a straight line; then the phase factor in (5.1) becomes e

1
2 iB( �xi× �xj ) for a constant

magnetic field B.
Unfortunately, f −1(x, y), the functional inverse of f (x, y) in (5.1), does not have a

particularly simple form, and so the corresponding field theory is not particularly attractive.
On the other hand, we can simply define the model we would like to study by writing

down the field theory

S =
∫

d2x

[
n∑

a=1

(|Dψa|2 + m2|ψa|2) − ρe−(1/z)
∑n

a=1|ψa |2
]

(5.2)

with the covariant derivative Dj = ∂j − iAj . Now the inverse f (x, y) of f −1(x, y) =
(−D2 + m2)δ(x − y) does not have a particularly simply form. The second form, equation
(5.2), arises from the magnetic version of model II [12].

Thus, we can define two different classes of models for studying density of states and
localization in the presence of a magnetic field. We can either have a simple f (x, y) or a
simple f −1(x, y).

Suppose we want to calculate the density of states for ρ large. Doing a high-density
expansion of the Green’s function, we have

G(z) =
∞∑
n=0

1

zn+1
ρn

∫
dx1 dx2 · · · dxn f (x1 − x2) · · · f (xn−1 − xn)

× e(i/2)B[(�x1×�x2)+(�x2×�x3)+···+(�xn×�x1)]. (5.3)

After Fourier transforming

f (x) =
∫

d2k

(2π)2
ei�k·�xf (k) (5.4)

we can do the Gaussian integration over x to obtain

G(z) =
∞∑
n=0

1

zn+1
ρn

∫
d2k1

(2π)2
· · · d2kn

(2π)2
f (k1) · · · f (kn) exp

(
i

2Bn

∑
q

1

2 cos q
( �T × �T ∗)

)

(5.5)

where

�T =
∑
j

eiqj �pj (5.6)

where �pj = �kj − �kj−1. We were not able to evaluate G(z) but in principle it might be possible
for a Gaussian f (k) = e−ak2

.
In theB → 0 limit the stationary-phase requirement forces all the �ks to be equal and so we

recover the appropriate zero-magnetic-field result from reference [1]. In the opposite B → ∞
limit we drop the exponential and obtain to leading order G(z) = 1/(z − ρf (x = 0)), a result
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as expected. It simply says that as the Larmor radius goes to zero, each point in our random
collection of points is its own universe. Again, in principle, the corrections in powers of 1/B
could be worked out.

Note added in proof. The field theory discussed here has also appeared in a discussion of dirty d-wave superconductors
(Chamon C and Mudry C cond-mat/0008241).
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